Inducible and reversible phenotypes in a novel mouse model of Friedreich’s Ataxia
نویسندگان
چکیده
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.
منابع مشابه
Expandable DNA Repeat and Human Hereditary Disorders
Background & Aims: Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA, including fragile X syndrome, myotonic dystrophy, Huntington’s disease, and Friedreich’s ataxia. One the most frequently occurring types of mutation is trinucleotide repeat expansion. The present study was conducted with the aim of investigating the cause...
متن کاملClinical and Genetic Study of Friedreich’s Ataxia and Ataxia with Vitamin E Deficiency in 44 Moroccan Families
Introduction: Friedreich ataxia (FRDA) is a multi-system autosomal-recessive disease, the most common one of the genetically inherited ataxias. FRDA occurs as a consequence of mutations in the frataxin gene, with an expansion of a GAA trinucleotide. Ataxia with vitamin E deficiency (AVED) is characterized clinically by neurological symptoms with often striking resemblance to those of Friedreich...
متن کاملRNAi prevents and reverses phenotypes induced by mutant human ataxin‐1
OBJECTIVE Spinocerebellar ataxia type 1 is an autosomal dominant fatal neurodegenerative disease caused by a polyglutamine expansion in the coding region of ATXN1. We showed previously that partial suppression of mutant ataxin-1 (ATXN1) expression, using virally expressed RNAi triggers, could prevent disease symptoms in a transgenic mouse model and a knockin mouse model of the disease, using a ...
متن کاملClinical data and characterization of the liver conditional mouse model exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia
Friedreich's ataxia (FRDA) is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has ...
متن کاملCatalase overexpression rescues Friedreich’s Ataxia mouse models from oxidative stress and mitochondrial iron-loading
Friedreich’s ataxia (FRDA) is an inherited neurodegenerative disorder characterized by gait disturbance and speech problems. Disease pathology is characterized by progressive damage and loss of nerve tissue particular to the peripheral nerve system. FRDA is caused by the relative deficiency of a mitochondrial protein frataxin resulting from an expanded intronic GAA triplet repeat. While the pre...
متن کامل